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A number of model compounds have been synthesized1 in an 
effort to mimic the active sites of enzymes by combining functional 
groups with appropriate host molecules such as cyclodextrins,2a 

crown ethers,2b and cyclophanes.2c This approach has been quite 
successful in elucidating general mechanisms3 of enzyme catalysis 
and has provided useful information on the design of molecules 
which possess specified catalytic functions. 

Synthetic polypeptides with defined tertiary structures are more 
attractive candidates for the assembly of model enzymes. Recent 
advances in recombinant DNA technology coupled with the rapid 
accumulation of X-ray structural data on native proteins have 
contributed to defining the anticipated folding in such poly­
peptides.3 Moreover, several recent successful examples4 of de 
novo designed small proteins also encourage the synthesis of 
polypeptide based model enzymes. Neither substrate binding nor 
catalytic activity have, however, been reported for such model 
proteins. We wish to report here the synthesis,5 characterization, 
and catalytic activity of an artificial hemeprotein 1 (Figure 1). 

The overall topology of the molecule 1 was carefully designed 
so that peptide 2 has a high potential to form amphiphilic a-helix6 

(Figure 2) and to create a hydrophobic pocket for substrate binding 
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Figure 1. Proposed structure of helichrome 1 after folding of the peptide 
chains. 
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Figure 2. Amino acid sequence of peptide: (a) helix wheel and (b) helix 
diagram, in which the circle represents hydrophobic amino acids. 
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Figure 3. Circular dichroism spectra of helichrome (—, 7.95 X 10~5 M) 
and peptide alone (—, 4.94 X 10~" M) in 20 mM phosphate, 0.16 M KCl 
pH 7.5. 

above the porphyrin ring after the expected folding of the peptide 
chains. The fully protected peptide segment 3 was synthesized73 

via a fragment condensation of two small peptide segments 
(Boc-(l-7)-C02H and H2N-(8-15)-CONH2) which were prepared 
by utilizing oxime resin.7b After deprotection of the Boc group 

(7) (a) Boc-Ala-Glu(OBzl)-Gln-Leu-Leu-Gln-Glu(OBzl)-oxime resin 6 
was prepared by the stepwise peptide synthesis. The treatment of 6 with 
1-hydroxypiperidine followed by Zn reduction in 90% AcOH and with leucine 
amide afforded N-terminus half (Boc-(l-7)-COOH) 7 and C-terminus half 
(Boc-(8-15)-CONH2) 8, respectively. A segment condensation of 7 and 8 
after the deprotection of Boc group 8 gave the desired protected peptide 
segment 3 in 81% yield, (b) DeGrado, W. F.; Kaiser, E. T. J. Org. Chem. 
1982, 47, 3258. DeGrado, W. F.; Kaiser, E. T. J. Org. Chem. 1980, 45, 1295. 
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of 3 by treatment with trifluoroacetic acid, the activated porphyrin 
ester 58 was reacted with the peptide segment in DMSO-DMF 
for 2 days at 50 0C. The precipitated products were collected 
(57%), treated with TMSOTf/thioanisole/trifluoroacetic acid 
reagent9 in order to remove all protecting groups, and then sub­
jected to reverse phase HPLC (Vydac Cl8 column, 20 mM 
Et3N/H3P04 pH 6.5, 30%-80% acetonitrile linear gradient for 
30 min). A major peak at 63% acetonitrile was collected (37%) 
and was found to be the desired compound.10 

Helichrome 1 is very soluble in buffer (over 1 mM in 20 mM 
phosphate, 0.16 M KCl pH 7.5) and is practically insoluble below 
pH 3 as expected from its peptide sequence. One of the most 
remarkable characteristics of 1 is the high a-helical content (ca. 
70%) indicated by its CD spectrum in the aqueous buffer solution, 
whereas single peptide 2 alone exhibited a typical CD pattern of 
a disordered conformation11 under identical experimental condition 
as shown in Figure 3. Helichrome 1 was found to be monomeric 
under the condition of the CD measurement based on both gel 
filtration on Sephadex G-50 and sedimentation equilibrium ex­
periments (MWapp = 7200 ± 500); in accord with an intramo-
lecularly folded state of the molecule. These observations strongly 
suggest that the close proximity of porphyrin-linked peptide 
segments induces the amphiphilic a-helical structure and then 
facilitates a spontaneous formation of the folded tertiary structure. 
Buffer solution of 1 showed a red-shifted fluorescence maximum 
at 617 nm, which indicated a moderately hydrophobic environment 
around the porphyrin ring12 and provided further experimental 
support for the proposed structure of 1 in solution. 

We next examined the aniline hydroxylase activity of the Fe(III) 
complex la13 of helichrome 1. The formation of p-aminophenol 
was monitored14 at varying aniline concentration and fixed con­
centrations of la (3.1 ^iM), 7-acetylflavin (0.24 ,uM), and NADPH 
(2.5 mM) in 20 mM A'a-acetyl histidine buffer pH 7.0. A 
double-reciprocal plot of the rates for various concentrations of 
aniline was linear and provided &cat = 0.02 min"1 and Km = 5.0 
mM. A series of control experiment showed that every component 
except 7-acetylflavin15 in the reaction mixture was essential to 
the hydroxylase activity. Fe(III) coproporphyrin I (4.7 /uM) 
showed negligible aniline hydroxylase activity16 under the same 
conditions, demonstrating a significant contribution of the peptide 
segments to catalysis by la, most probably by providing binding 
pocket(s) for the substrate(s). Furthermore, the observed hy­
droxylase activity of la was completely inhibited by catalase (100 
units) but not by superoxide dismutase (SOD) (10 units). Several 
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hemeproteins17 such as hemoglobin, indoleamine 2,3-dioxygenase, 
and L-tryptophane 2,3-dioxygenase have been reported to catalyze 
the hydroxylation of aniline in the presence of oxygen and an 
appropriate reducing system with k^t and Km values ranging from 
0.02 to 0.65 min"1 and from 3.7 to 5.4 mM, respectively. Their 
activities are inhibited by both catalase (completely at 100 units) 
and SOD (ca. 50% with 10 units), suggesting possible involvement 
of peroxide type intermediates in the catalytic cycle.17 Although 
our system requires further experimentation to define its catalytic 
mechanism, the above results clearly demonstrate that la has a 
hydroxylase activity quite similar to that of native hemeproteins. 

In conclusion, our preliminary work has established that hel­
ichrome 1 and its iron complex are a first generation model 
hemeprotein based on a synthetic peptide. It is worth noting that 
the folding process of such a synthetic protein could be simplified 
by the introduction of an appropriate organic compound as seen 
in the present system. Detailed mechanistic investigation of the 
catalysis by la and further structural characterizations of 1 are 
now in progress. 
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Vanadyl alkylphosphonates are a new family of compounds that 
can recognize primary alcohol molecules and selectively discrim­
inate among various branched isomers. They are examples of 
layered solids with alternating inorganic and organic layers, in­
triguing materials that can exhibit useful sorptive and catalytic 
properties and can serve as microcrystalline bulk models for in-
terfacial systems.1"10 Vanadium alkylphosphonates undergo 
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